Homogeneous and compact acoustic ground cloaks

نویسندگان

  • Bogdan-Ioan Popa
  • Steven A. Cummer
چکیده

We present the design, architecture, and detailed performance predictions for a class of ground-plane acoustic cloaking shells. The design begins with a coordinate transformation which, in contrast to a quasiconformal design, yields a homogeneous but anisotropic material and a shell size that is comparable to the size of the object to be hidden. We apply the general approach to the design of a broadband acoustic cloak in water, in which the desired material parameters are realized through acoustic metamaterials composed of blocks of steel, aluminum foam, and silicon carbide foam. Since metallic and ceramic foams are prone to sound absorption, we discuss the effects of loss inside the two types of foam. An important part of this design consists in reducing the shear wave effects inside the solids by isolating these solids from each other through narrow channels of background fluid. Numerical simulations of the entire device, as composed of the discrete and basic material building blocks, demonstrates good performance and shows that such a device can be physically realized through the assembly of available materials in a relatively simple form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact-sized and broadband carpet cloak and free-space cloak.

Recently, invisible cloaks have attracted much attention due to their exciting property of invisibility, which are based on a solid theory of transformation optics and quasi-conformal mapping. Two kinds of cloaks have been proposed: free-space cloaks, which can render objects in free space invisible to incident radiation, and carpet cloaks (or ground-plane cloaks), which can hide objects under ...

متن کامل

Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks.

We propose a novel kind of trapeziform cloak requiring only homogeneous anisotropic materials. Large-scale flat cloaks can be degenerated from the general trapeziform cloak with PEC inner boundary, and be realized by isotropic nonmagnetic materials for optical frequencies with controlled index profiles and improved invisibility. With the support of PEC inner boundary, large vehicles and objects...

متن کامل

Proceedings of Meetings on Acoustics

A coordinate transformation scheme is proposed to make a sensor acoustically undetectable while allowing it to receive external information. The designed structure only comprises complementary media (CM) whose acoustic parameters are single-negative rather than double-negative, and are totally independent of those of the sensor and the background medium. The numerical results show that the inci...

متن کامل

Non-blind acoustic invisibility by dual layers of homogeneous single-negative media

Non-blind invisibility cloaks allowing the concealed object to sense the outside world have great application potentials such as in high-precision sensing or underwater camouflage. However the existing designs based on coordinate transformation techniques need complicated spatially-varying negative index or intricate multi-layered configurations, substantially increasing the difficulty in pract...

متن کامل

Acoustic cloaking transformations from attainable material properties

We propose a general methodology and a set of practical recipes for the construction of ultra-broadband acoustic cloaks—structures that can render themselves and a concealed object undetectable by means of acoustic scattering. The acoustic cloaks presented here are designed and function analogously to electromagnetic cloaks. However, acoustic cloaks in a fluid medium do not suffer the bandwidth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011